Experimental Conditions

The experimental conditions are summarized in the following table:

- **Ligand**: Anti-HSA
- **Analyte**: HSA
- **Analyte Concentrations**: 1.25, 2.5, 5, 10 and 20 nM
- **Association Time**: 3 min
- **Dissociation Time**: 4 min
- **Regeneration**: 10 mM Glycine pH 2.0 with 10% Glycerol

Results

Antibody based capture analysis using a Reichert SR7500DC Surface Plasmon Resonance (SPR) system

Non-covalent capture methods are typically used to attach ligands to an SPR surface in instances where the ligand cannot withstand the lower pH needed for covalent coupling or when a ligand needs to be attached in a more oriented manner. This approach is applicable to a variety of types of samples. The example in this application note is where Goat Anti-Mouse IgG is amine coupled to a dextran surface and then used to capture monoclonal Anti-HSA IgG. Antigen binding (HSA) to the Anti-HSA is followed over a series of concentrations and a KD value is determined.

FIGURE 1

About 2,000 mRIU of Goat Anti-Mouse IgG Fc was amine coupled to the CMD500k dextran surface. For each series of injections, a constant concentration of monoclonal Anti-HSA IgG (50 mg/mL) was captured over the surface, and then varying concentrations of HSA were injected (see table). Both Anti-HSA and HSA were then removed during each regeneration cycle.
Learn more about how Reichert pushes the limits of detection and sensitivity in label-free interaction. To improve the quality of your protein interaction research, visit www.ReichertSPR.com

FIGURE 2
The good reproducibility of the capture step and the chemical stability of the CMD500k surface are seen here. Even after multiple injection regeneration cycles, the surface was stable and gave reproducible results.

FIGURE 3
The good reproducibility of replicate injections of HSA can be seen in this figure. HSA was injected at various concentrations (see table) and fit to a 1:1 binding model. The red lines are the fit obtained in Scrubber (Biologic Software). The equilibrium dissociation constant (KD) obtained was 4.93 nM.

Trademark of Reichert Technologies Company Notice: No freedom from infringement of any patent owned by Reichert or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer’s use and for ensuring that Customer’s workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Reichert is represented. The claims made may not have been approved for use in all countries. Reichert assumes no obligation or liability for the information in this document. References to “Reichert” or the “Company” mean the Reichert legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.